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Summary. The synthesis and reactivity of the silyl enol ether (3) is reported. This reagent complements the 

reactivity of the lithiated enol ether (2) previously used as a synthetic equivalent of the regiospecific 

tetrahydropyran-3-one enolate (1). 

As part of a general study relating to the synthesis of complex tetrahydropyrans, we recently reported that the 

b-alkoxy alkenyl lithium (2) can be used as an effective equivalent of the regiospecific enolate (l,R=H).’ 

This enolate regioisomer is difficult to obtain in useful yields from the corresponding ketone since the 

preferred mode of enolization of pyran-3-ones tends to be away rather than towards the ring constrained 

heteroatom.’ 

In a more conventional sense, the introduction of silyl enol ethers greatly expanded the synthetic scope of 

enolate chemistry by providing a means of introducing an electrophile to a ketone under nonequilibrating 

conditions3 Not only do these labile silyl derivatives provide access to the corresponding enolate, but they 

are also compatible with a range of “SNl-type” electrophiles in the presence of Lewis acids4 
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A silyl derivative of enolate (1) would be anticipated to provide significant advantages over the alkenyl 

lithium (2), the scope of which is limited by the highly basic nature of this species. In this paper we describe 

the synthesis and reactivity of the t-butyldimethylsilyl(TBDMS) enol ether derivative (3). 
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The synthesis of (3) is shown in Scheme 1. The only significant difference between this route and that used 

to prepare the methoxy precursor of (2)’ was the use of benzyl alcohol rather than methanol in the peracid 

oxidation of dihydropyran. 
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SCHEME 1. Reagents: i, m-CPBA, PhCHzOH (58%); ii,TDBMSCl,DBU (94%); iii,H, PdIC (86%); 

iv,MeSO&Y, Et,N (80%). 

In this way the corresponding hemiacetal was obtained by hydrogenolysis rather than by acid-catalysed 

hydrolysis which led to extensive migration and loss of the silyl moiety. 

Reaction of benzaldehyde with silyl enol ether (3) under Mukaiyama’s conditions5 (SnCl,,CH,Cl,,-78°C) was 

unselective, giving the aldol product (4a) in 50% yield as a 3:2 mixture of syn and anti diastereoisomers. The 

condensation of (3) with benzaldehyde dimethyl acetal in the presence of trimethylsilyl 

trifluoromethanesulphonate6 was also examined. Under these conditions a higher level of selectivity was 

observed with (4b) being isolated as a 5:l mixture of isomers.7 Phenylthiomethylation8 of (3) was achieved 

using a-chloromethylphenylsulphide in the presence of ZnBr, in CH,Clz at 20°C to give (5) in 64% yield. 
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Because of their relevance to the synthesis of the herbicidin class of tricyclic nucleosides, we have also 

studied the reactivity of silyl enol ether (3) towards the more complex carbohydrate-derived electrophiles, 

aldehyde (6)9 and cr-chlorosulphide (9)” 
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Condensation of (6) with silyl enol ether (3), using SnCb as the Lewis acid of choice, in CH,Cl, at -78°C 

gave a 1: 1 mixture of two inseparable diasteroisomeric aldol adducts (7a) and (7b) in 35% yield. 

Hydrogenolysis of this mixture gave a separable mixture of the tetracyclic hemiketals @a) and (8b) in 50% 

yield. The structural assignments of @a/b) are based on extensive ‘H nmr studies. 
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In the presence of TiCl, (CH,Cl,,-70°C), a-chlorosulphide (9) reacted with silyl enol ether (3) to give a 4: 1 

mixture of two diasteroisomers in a combined yield of 70%. The major component (10a) was readily 

separated and the structure of this adduct was established by x-ray crystallographic analysis.” 

Raney nickel desulphurization of (10a) followed by fluoride ion-induced desilylation gave hemiketal (lla) in 

50% overall yield. This structural assignment was also confirmed by x-ray crystallography.‘* In a similar 

fashion the other adduct (lob) was converted to hemiketal (llb), but the stereochemical assignment of the 

anomeric hydroxyl of this isomer has not been established unambiguously. 
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In summary, the silyl enol ether (3) complements the reactivity of the alkenyl lithium (2), but the chemistry 

described above is likely to be applied more readily to the synthesis of more complex tetrahydropyran-3-ones. 
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